Line of sight measurements in sprays

By Fredrik Ree Westlye <u>frrwe@mek.dtu.dk</u>

DTU Mechanical Engineering

Department of Mechanical Engineering

Spray flame experiments

- Experimental validation of computational modelling
- High pressure and temperature environment generated in CVC vessel

Optical diagnostics

- Imaging techniques advantageous
- Challenges:
 - High temporal resolution
 - Distortions from optically harsh environment

Schlieren imaging

Experimental setup

Extinction imaging

- Lighting characteristics can isolate scattering and absorption
- Severely reduced light throughput
- Attempts to achieve diffused lighting with high light throughput

Extinction imaging

- Lighting characteristics can isolate scattering and absorption
- Severely reduced light throughput
- Attempts to achieve diffused lighting with high light throughput
- Enhanced setup maintain high light throughput of well characterized diffused lighting

Previous DBI

Improved DBI

Extinction imaging of soot

- Transmission consists of sequential and reference images
- Moving flame luminosity introduces error
- High temporal resolution and spectral filtering reduces error
- Clever post processing can further reduce error

Extinction imaging of soot

- KL is a projection
- K obtained by tomographic reconstruction
- Soot volume:
 - Optical properties
 - Fractal dimensions
 - Small particle Mie theory coupled with Rayleigh-Debye Gans theory

$$K_{abs} = -\frac{6\pi}{\lambda} f_{\nu} E(\widetilde{m})$$

Experimental setup

Schlieren imaging of vapor phase

- Imaging gradients in refractive index
- Temporal differencing isolates the rapid processes
- Well defined background noise
- Adaptive filtering
- Thresholding to evaluate vapor boundary

Penetration characteristics

11 DTU Mechanical Engineering, Technical University of Denmark

 $x_{0_2} = 0$ $T_{amb} = 900 \text{ K}$ $p_{inj} = 1500 \text{ bar}$ $\rho_{amb} = 22.8 \text{ kg/m}^3$

DTU

Model validation: Flow field

- Vapor boundary defined by gradient of FA ratio
- Well predicted penetration characteristics

Model validation: Soot volume fraction

 Opaque flame at higher Simulation ambient temperature

Measurement

- Good agreement spatially and quantitatively
- Flames too optically thick in the visual

Discussion

- Advances in measurement reliability
- Limitations have been identified
- Infra-red can cope with the high optical thickness
- Gas phase thermometry

Flame lift-off length measurement

- Lift-off length is the distance from injector to flame stabilization point
- Measured via OH* chemiluminescence at 309 nm

