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Objective(s):
i. To investigate how the soot formation behaves when aromatic 

compound is considered and is omitted in the surrogate fuel 
model

ii. To develop and to validate a skeletal chemical kinetic mechanism 
which is computationally efficient for 3-D CFD large bore marine 
engine simulations yet sufficiently comprehensive to include 
species essential for pollutant formation predictions

iii. To numerically investigate in-cylinder phenomena in a large, low-
speed uniflow-scavenged marine diesel engine, operating at full 
load condition where optical measurements are not available

Introduction
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• TCI improves the IDT and LOL results
• But, calculated ratio of maximum SVF is ~2 is close to with the 

measurement in n-dodecane spray combustion data

Diesel spray combustion

15% O2; 900 K 15% O2; 1000 K
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Diesel spray combustion

Axis of 
reflection

• Single component
- 68 species by Lu et al. [2009]
- Pure n-heptane model and no aromatic chemistry is included
- C2H2 is used as soot precursor and surface growth species

• Multi-component
- 70 species model by Golovitchev et al. [2005]
- Diesel Oil Surrogate, DOS
- Integration of n-heptane and toluene mechanisms
- Widely used in multi-dimensional CFD diesel engine simulations
- A2 is used as soot precursor; C2H2  is used as surface growth species
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• Version I (C16 model): adding heptamethylnonane, HMN
- For desired cetane number,
- FHXN : FHMN = 0.42 : 0.58
- C2H2 is used as soot precursor and surface growth species
- 88 species

Multi-component, C16 model

( 0.15 ) 100HXN HMNCN F F= + ×
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• Version II (Revised C16 model): adding CHX and C7H8 into Version I
- FHXN:FHMN:FCHX:FC7H8 = 0.42 : 0.20 : 0.10 : 0.28
- A1 is used as soot precursor; C2H2  is used as surface growth species
- 129 species

Multi-component, C16 model



10

Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST)

HXN HXN HXN

HMN HMN HMN

CHX CHX CHX

Detailed (solid lines); reduced (dotted lines); C16 (Х); Revised C16 (○) 
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Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST) 
and jet stirred reactor (JSR)
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Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST) 
and jet stirred reactor (JSR)

Detailed DPRF58 mechanism (lines)
C16 (Δ)
Revised C16 (○) 
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Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST) 
and jet stirred reactor (JSR)

Experimental (symbols) and computed (lines) mole fractions for the 
oxidation of HXN at 1 atm in a JSR (0.03% of HXN, 1.47% of O2, 
98.5% of N2, Ф = 0.5, τ = 0.07 s). 
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Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST) 
and jet stirred reactor (JSR)

Experimental (symbols) and computed (lines) mole fractions for the 
oxidation of HMN at 10 atm in a JSR (0.07% of HMN , Ф = 2.0, τ = 1.0 s) 
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Multi-component, C16 model

Axis of 
reflection

• Validation: shock tube (ST) 
and jet stirred reactor (JSR)

Experimental (symbols) and computed (lines) mole fractions for the 
oxidation of CHX at 10 atm in a JSR (0.1% of CHX, Ф = 1.5, τ = 0.5 s) 



16

• The n-heptane mechanism performs the best in the current test cases
• C16 and revised C16 models predict the IDTs fairly well but slightly

overestimate the LOLs

Diesel spray combustion

Axis of 
reflection
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• Calculated ratio of maximum SVF is ~2 
when fuel mechanisms without toluene is 
used, agreeing with the measurement in 
n-dodecane spray combustion data

• The use of DOS is produces a ratio of ~8.5 
but IDT and LOL in the 900 K are
overestimated

Diesel spray combustion

Model SVFmax in  
900K case

SVFmax in 
1000K case ratio

n-heptane 11.16 ppm 22.0 ppm 1.9
DOS 0.13 ppm 1.10 ppm 8.5
C16 11.3 ppm 21.3 ppm 1.8
Rev. C16 2.60 ppm 9.64 ppm 3.7

n-
heptane

DOS

C16

Rev. 
C16
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Rate of production analysis of DOS

Axis of 
reflection

• During the fuel oxidation process and before the ignition, C2H2
formed via R1 and R2

C6H5+O2 <=> CH2CO+HCCO+C2H2 (R1)
C6H4O2+O => 2CO+C2H2+CH2CO (R2)

where C6H5 and C6H4O2 are both compounds formed during the 
oxidation of toluene

• At higher temperatures after ignition occurs, significant pathways to 
the formation of C2H2 are shown in R3 and R4. Also, C2H2 is formed 
from C6H5 via R5.

C2H4+M <=> C2H2+H2+M (R3)
C2H3+O2 <=> C2H2+HO2 (R4)
C4H3+C2H2 <=> C6H5 (R5)
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To-date observations

• Calculated ratio of maximum SVF is ~2 when fuel mechanisms
without toluene is used, agreeing with the measurement in n-
dodecane spray combustion data

• The use of DOS is more promising, producing a ratio of ~8.5 but 
IDT and LOL in the 900 K are overestimated

• The used of revised C16 model (which is validated using jet stirred
reactor oxidation results) produces a ratio of ~ 3.7

• Co-oxidation reactions are unknown
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‘From Sandia spray to engine’

How significant it is 
to consider the 

kinetics of aromatic
compound? 

Can it be
compensated by 
tuning the soot
model constant?
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‘From Sandia spray to engine’

• Diesel soot modelling at different ambient temperature is 
challenging – a single injection case is selected

• Potentially greatest amount of in-cylinder soot (hence greatest soot
radiative heat loss) – a high load case is selected

• Main differences in the Sandia constant vessel and MDT marine 
engine cases are
i) Injection pressure
ii) Nozzle hole diameter
iii) In-cylinder pressure (during start of injection)

Ambient T = 1000 K

Pinj.= 1400 bar

Dnozz.= 0.1 mm

Ambient [O2] = 21%

Ambient P = ~40 bar

Pinj.= 400, 900,
1900 bar Dnozz.= 0.05, 

0.071, 0.18 mm
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Operating conditions/injection specifications

Constant volume

combustion chamber (t=0)

[O2] 21 % 21 % 21 % 21 %

T [K] 950 950 950 950

𝜌𝜌 (kg/m3) 7.3 14.8 30.0 56.3

P [bar] 19.6 38.6 80.0 150.0

orifice diameter 

(mm)

0.1 0.1 0.1 0.1

Fuel mass delivered 

[g]

0.0178 0.0135 0.0139 0.0139

Injection duration 

[ms]

6.5 4.9 4.87 4.87
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Operating conditions/injection specifications

Constant volume

combustion chamber (t=0)

Marine engine 

(at TDC)

[O2] 21 % 21 % 21 % 21 % 21 %

T [K] 950 950 950 950 924

𝜌𝜌 (kg/m3) 7.3 14.8 30.0 56.3 57.3

P [bar] 19.6 38.6 80.0 150.0 152.9

orifice diameter 

(mm)

0.1 0.1 0.1 0.1 1.0

Fuel mass delivered 

[g]

0.0178 0.0135 0.0139 0.0139 44.6

Injection duration 

[ms]

6.5 4.9 4.87 4.87 31.2
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Numerical formulation (STAR-CCM+)

Models/Resolution Descriptions
Spray breakup model KH-RT, B1 = 25
Turbulence model Standard k-ε, with C1 = 1.55 /

k-omega SST
Turbulence-chemistry interaction None i.e. Well-stirred reactor
Liquid properties C14H30

n-Heptane combustion chemistry In-house; 30 species
Soot model Pang et al. [2015] model
Radiation model None / DOM; Ka = 1862 ∙ fv ∙T
Smallest cell size 0.25 mm / 2.5mm
Timestep size 4 x 10-7 s / 4 x 10-6 s
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Numerical formulation (STAR-CCM+)

Models/Resolution Descriptions
Spray breakup model KH-RT, B1 = 25
Turbulence model Standard k-ε, with C1 = 1.55 /

k-omega SST
Turbulence-chemistry interaction None i.e. Well-stirred reactor
Liquid properties C14H30

n-Heptane combustion chemistry In-house; 30 species
Soot model Pang et al. [2015] model
Radiation model None / DOM; Ka = 1862 ∙ fv ∙T
Smallest cell size 0.25 mm / 2.5mm
Timestep size 4 x 10-7 s / 4 x 10-6 s
Reference: Haider S, Ivarsson A, Pang KM, Schramm J, Mansouri SH, Proceeding of 12th 
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 11 to 
13 July 2016, Malaga, Spain.
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Skeletal n-heptane model

• Previous study:
1. Temporal/spatial evolution of 

PAH and C2H2 are similar at 
21% O2 cases

2. O2 and OH oxidation are both
significant

3. Aromatic chemistry in the 
initial fuel composition is less
influential at varying pressures

• Reduced from 44 species to 30 
species
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Model validation I
• Ignition delays and lift-off

lengths calculated by different
mechanisms are compared

• The use of 30 species strikes a 
balance between accuracy and 
efficiency
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Model validation II

• Revised soot model predicts soot volume fraction (SVF) at different
ambient pressures

• Maximum SVF predicted by revised model is 15-fold higher at 150 bar
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Model validation II

• Soot inception is observed at peak of PMC HRR
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Mesh configuration and convergence studies

Local 
refinement 

region

Cylinder head

Liner Piston surface

Cyclic boundary

Side view

Top view

Liner

• Local refinement is found to be
essential

• The large timestep causes a steep
pressure gradient near ignition
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Comparisons of different physical models

• Ignition delay is slightly underpredicted

• Maximum relative difference in term of peak pressure is < 1.7 %

• Using a larger breakup rate constant value changes the HRR shape
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Temperature-equivalence ratio map

• Liff-off length in marine diesel engine case is much lower
• The local equivalence ratio and soot volume fraction are much

higher

0

2

4

6

8

10

12

400 800 1200 1600 2000 2400 2800

E
qu

iv
al

en
ce

 r
at

io
 [-

]

Local temperature [K]

Marine engine

Constant volume
chamber

Region with high 
soot concentration



36

OH and soot distributions

• In-cylinder flow has a strong influence on both distributions

• Flame impingement starts at approximately 12 CAD ATDC

OH distribution 

Soot distribution 
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Pollutant formation

• Soot radiation does not influence the total soot mass significantly

• The NOx level is 7.7% lower when soot radiation is considered
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Heat transfer

• 30% higher when soot radiative heat loss is taken into consideration
• Sensitivity studies on Planck mean absorption expression, C0
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Conclusions

• A new skeletal diesel surrogate model is developed for combustion 
and soot modelling

• In-cylinder phenomena in a two-stroke, uniflow-scavenged marine 
engine are studied

• The averaged NO concentration is 7.7% lower as soot radiation is 
considered

• Special attention has to be given in the simulation of in-cylinder, 
peak soot concentration for different SOI or load 

• The model can be integrated with SOx chemistry to investigate the 
SOx and H2SO4 formation in marine engine
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Numerical tools (for MAN Diesel & Turbo SE)

• Soot library
- OpenFOAM 2.0.x
- OpenFOAM 2.3.x

• Chemical kinetic mechanism
- Skeletal n-heptane mechanism
- Multicomponent diesel surrogate model

• STARCCM combustion engine model
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