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Introduction

Objective(s):

I. To investigate how the soot formation behaves when aromatic
compound is considered and is omitted in the surrogate fuel
model

Ii. To develop and to validate a skeletal chemical kinetic mechanism
which is computationally efficient for 3-D CFD large bore marine
engine simulations yet sufficiently comprehensive to include
species essential for pollutant formation predictions

lii. To numerically investigate in-cylinder phenomena in a large, low-
speed uniflow-scavenged marine diesel engine, operating at full
load condition where optical measurements are not available
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Diesel spray combustion

e TCI improves the IDT and LOL results

e But, calculated ratio of maximum SVF is —2 is close to with the
measurement in n-dodecane spray combustion data

Lift-off

4x10%
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Diesel spray combustion

e Single component
- 68 species by Lu et al. [2009]
- Pure n-heptane model and no aromatic chemistry is included
- C,H, is used as soot precursor and surface growth species

e Multi-component
- 70 species model by Golovitchev et al. [2005]
- Diesel Oil Surrogate, DOS
- Integration of n-heptane and toluene mechanisms
- Widely used in multi-dimensional CFD diesel engine simulations
- A, is used as soot precursor; C,H, is used as surface growth species
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Multi-component, C16 model

e Version | (C16 model): adding heptamethylnonane, HMN
- For desired cetane number, CN = (F, +0.15F,,)x100

- C,H, is used as soot precursor and surface growth species

- 88 species
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Multi-component, C16 model

e Version Il (Revised C16 model): adding CHX and C,Hg into Version |

- A, is used as soot precursor; C,H, is used as surface growth species
- 129 species
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Multi-component, C16 model

e Validation: shock tube (ST)
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Multi-component, C16 model

e Validation: shock tube (ST)
and jet stirred reactor (JSR)
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Multi-component, C16 model

e Validation: shock tube (ST)
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Multi-component, C16 model

« Validation:

jet stirred reactor (JSR)
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Multi-component, C16 model

e Validation:
jet stirred reactor (JSR)
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Multi-component, C16 model

e Validation:
jet stirred reactor (JSR)
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Diesel spray combustion

30 - 40
i ® Measurement |
1 . + n-heptane [ 35
2.5 . . = DOS
-] LOL s Cle £ 30
g il x Revised C16 [ =
- 2.0 L i =
g 1 25 &
= - =
E s A 0 3
= 1.5 = 20 =
s . B
g ] . I L}
= | m C 15 =
i ‘ \ 10 =
| u i
0.5 L] i
| 5
0.0 - . . . 0
850 900 950 1000 1050

Temperature [K]
e The n-heptane mechanism performs the best in the current test cases

e C16 and revised C16 models predict the IDTs fairly well but slightly
overestimate the LOLs
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Diesel spray combustion

e Calculated ratio of maximum SVF is —2
when fuel mechanisms without toluene is
used, agreeing with the measurement in
n-dodecane spray combustion data

e The use of DOS is produces a ratio of —8.5

but IDT and LOL in the 900 K are

overestimated

D2

D2

SVF in SVF N :
Model 900K case 1000K case "2t
n-heptane 11.16 ppm 22.0 ppm 1.9
DOS 0.13 ppm 1.10 ppm 8.5
C16 11.3 ppm 21.3 ppm 1.8
Rev. C16 2.60 ppm 9.64 ppm 3.7

17 I DTU Mecha.n1ca1 Engmt.eer_mg.
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Rate of production analysis of DOS

e During the fuel oxidation process and before the ignition, C,H,
formed via R1 and R2

CcH+0, <=> CH,CO+HCCO+C,H,  (R1)
CH,0,+0 => 2CO+C,H,+CH,CO (R2)

where C;H; and C4,H,0O, are both compounds formed during the
oxidation of toluene

e At higher temperatures after ignition occurs, significant pathways to
the formation of C,H, are shown in R3 and R4. Also, C,H, is formed
from CgzH;g via R5.

C,H,+M <=> C,H,+H,+M (R3)

C,H;+0, <=> C,H,+HO, (R4)
C4H3+CH, <=> C4zHq (R5)

18 I DTU Mechanical Engineering



HE

Rate of production analysis of DOS

e During the fuel oxidation process and before the ignition, C,H,
formed via R1 and R2

CcH+0, <=> CH,CO+HCCO+C,H,  (R1)
CH,0,+0 => 2CO+C,H,+CH,CO (R2)

where C;H; and C4,H,0O, are both compounds formed during the
oxidation of toluene

e At higher temperatures after ignition occurs, significant pathways to
the formation of C,H, are shown in R3 and R4. Also, C,H, is formed
from CgzH;g via R5.

Reactions

in single {CzHﬂ"\/| <==> C,H,+H,+M (R3)

component | C,H;+0, <=> C,H,+HO, (R4)

mechanism ¢y 4+C,H, <=> CH. (R5)- Not in the
revised C16

model

19 I DTU Mechanical Engineering
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To-date observations

e Calculated ratio of maximum SVF is —2 when fuel mechanisms
without toluene is used, agreeing with the measurement in n-
dodecane spray combustion data

e The use of DOS is more promising, producing a ratio of —8.5 but
IDT and LOL in the 900 K are overestimated

e The used of revised C16 model (which is validated using jet stirred
reactor oxidation results) produces a ratio of — 3.7

e Co-oxidation reactions are unknown

20 I DTU Mechanical Engineering



‘From Sandia spray to engine’

How significant it is Can it be
to consider the compensated by

kinetics of aromatic tuning the soot
compound? model constant?

21 I DTU Mechanical Engineering
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‘From Sandia spray to engine’

e Diesel soot modelling at different ambient temperature is
challenging — a single injection case is selected

e Potentially greatest amount of in-cylinder soot (hence greatest soot
radiative heat loss) — a high load case is selected

e Main differences in the Sandia constant vessel and MDT marine
engine cases are
1) Injection pressure
i) Nozzle hole diameter
i) In-cylinder pressure (during start of injection)

Dnozz.: 0'05’

Doz, = 0.1 mm 0.071, 0.18 mm
Ambient [O,] = 21%

Ambient T = 1000 K
Ambient P = —40 bar

A

v

29 I DTU Mechanical Engineering
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HE

‘From Sandia spray to engine’

e Diesel soot modelling at different ambient temperature is
challenging — a single injection case is selected

e Potentially greatest amount of in-cylinder soot (hence greatest soot
radiative heat loss) — a high load case is selected

e Main differences in the Sandia constant vessel and MDT marine
engine cases are
1) Injection pressure
i) Nozzle hole diameter

1)
Iigjo: ﬁg?, 900, |, Pinj.= 1400 bar
— > Dnozz.: 0.05,
Do, = 0.1 mm 10.071, 0.18 mm

Ambient [O,] = 21%
Ambient T = 1000 K
Ambient P = —40 bar
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Operating conditions/injection specifications =

Constant volume

combustion chamber (t=0)

[O-]

21 % 21 % 21 % 21 %
T [K] 950 950 950 950
p (kgZ/m3) 7.3 14.8 30.0 56.3
P [bar] 19.6 38.6 80.0 150.0
orifice diameter 0.1 0.1 0.1 0.1
(mm)
Fuel mass delivered 0.0178 0.0135 0.0139 0.0139
[o]
Injection duration 6.5 4.9 4.87 4.87

[ms]

o5 I DTU Mechanical Engineering




Operating conditions/injection specifications

Constant volume

Marine engine

combustion chamber (t=0) (at TDC)
[O.] 21 % 21 % 21 % 21 % 21 %
T [K] 950 950 950 950 924
p (kgZ/m3) 7.3 14.8 30.0 56.3 57.3
P [bar] 19.6 38.6 80.0 150.0 152.9
orifice diameter 0.1 0.1 0.1 0.1 1.0
(mm)
Fuel mass delivered 0.0178 0.0135 0.0139 0.0139 44.6
[o]
Injection duration 6.5 4.9 4.87 4.87 31.2

[ms]
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Numerical formulation (STAR-CCM+)

i

| Models/Resolution

Descriptions

Spray breakup model
Turbulence model

Turbulence-chemistry interaction
Liquid properties

n-Heptane combustion chemistry
Soot model

Radiation model

Smallest cell size

Timestep size

KH-RT, B1 = 25

Standard k-g, with C; = 1.55/
k-omega SST

None i.e. Well-stirred reactor
C1aH30

In-house; 30 species

Pang et al. [2015] model
None / DOM; K, = 1862 - f, -T
0.25 mm / 2.5mm
4x107s/4x10°6s

57 I DTU Mechanical Engineering
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Numerical formulation (STAR-CCM+)

“Models/Resolution Descriptions
Spray breakup model KH-RT, B1 = 25
Turbulence model Standard k-g, with C; = 1.55 /
k-omega SST
Turbulence-chemistry interaction None i.e. Well-stirred reactor
Liquid properties Ci4H30
n-Heptane combustion chemistry In-house; 30 species
Soot model Pang et al. [2015] model
Radiation model None / DOM; K, = 1862 - f, T
Smallest cell size 0.25 mm / 2.5mm
Timestep size 4x107s/4x10°6s

Reference: Haider S, lvarsson A, Pang KM, Schramm J, Mansouri SH, Proceeding of 12th
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 11 to

13 July 2016, Malaga, Spain.
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Skeletal n-heptane model

e Previous study:

1. Temporal/spatial evolution of
PAH and C,H, are similar at
21% O, cases

2. O, and OH oxidation are both
significant
3. Aromatic chemistry in the

initial fuel composition is less
influential at varying pressures

e Reduced from 44 species to 30
species

29 I DTU Mechanical Engineering
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Model validation |

- Ignition delays and lift-off 5.0 ;

. —_ 1 -+ Measurement
lengths calculated by different gz, #29 species
mechanisms are compared @ : ~-30 species

= 3.0 1 +68 species
%\ |
e The use of 30 species strikesa 8 20 |
balance between accuracy and S 1o
efficiency S
0.0 -
100
1 -+ Measurement
"= 80 1 =29 species
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£ 60 - +68 species
o
5 ]
+ 40 -
5 ]
5 20 -
O T I T T T T
0 40 80 120
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Model validation |1

8 16
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S — 6 - S— 12 - —Revised; Cg=14 —Revised; Cg=28
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e Revised soot model predicts soot volume fraction (SVF) at different
ambient pressures

e Maximum SVF predicted by revised model is 15-fold higher at 150 bar
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Model validation |1
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e Soot inception is observed at peak of PMC HRR
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Mesh configuration and convergence studies

Cylinder head

Side view

T

Liner Piston surface

Local

. refinement
Top view region

*

Cyclic boundary

Liner

DTU Mechanical Engineering

33 Department of Mechanical Engineering

200 -
] —Baseline —Coarse [
180 - —0.5dt —2dt -
— 160 -
cs L
o -
o 140 .
120 | |, -
i / stee Prlse -
100 f p T T T T T T I —
0 5 10 15 20 25

CAATDC [Degree]

e | ocal refinement is found to be

essential

e The large timestep causes a steep
pressure gradient near ignition
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Comparisons of different physical models

W

200 : - 120
1 | —Measurement —Baseline i
180 1 | —B1=30 —With radiation |- 100
1 80 T
— 160 - %
(qv] ] B
=} ] - 60 z
o 140 : e
| - 40 &
120 20
100 -+ .

0 S 10 15 20 25

CAATDC [Degree]
e Ignition delay is slightly underpredicted

e Maximum relative difference in term of peak pressure is < 1.7 %

e Using a larger breakup rate constant value changes the HRR shape
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Temperature-equivalence ratio map

12 . .
1 - Marine engine

— 10 -
o | - Constant volume
28 - - chamber
s~ .
S 6 - Region with high
<@ 1 soot concentration
@ 4 -
> )
= |
o 2

0 - T T T T T T T T T T T T T T

400 800 1200 1600 2000 2400 2800
Local temperature [K]

e Liff-off length in marine diesel engine case is much lower

e The local equivalence ratio and soot volume fraction are much
higher
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OH and soot distributions

i

OH distribution
g

1.5 CA® 3.0 CA° 6.0 CA° 9.0 CA° 12.0 CAc  20.0 CA°

e Flame impingement starts at approximately 12 CAD ATDC
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Pollutant formation

12 : 2400
| —Baseline I
10 A —Radiation + Revised . 2000 >
| —Radiation + Conventional | c_<3
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(7p) i D
) o
g 6 - 1200 =
= @)
3 4 - 800 g
2 - / 4 - 400 3,
0 16 x‘soot ‘mass‘ 0

0 10 20 30 40
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e Soot radiation does not influence the total soot mass significantly

e The NO, level is 7.7% lower when soot radiation is considered
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Heat transfer
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» 30% higher when soot radiative heat loss is taken into consideration
= Sensitivity studies on Planck mean absorption expression, C,
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Conclusions

e A new skeletal diesel surrogate model is developed for combustion
and soot modelling

e In-cylinder phenomena in a two-stroke, uniflow-scavenged marine
engine are studied

e The averaged NO concentration is 7.7% lower as soot radiation is
considered

e Special attention has to be given in the simulation of in-cylinder,
peak soot concentration for different SOI or load

e The model can be integrated with SO, chemistry to investigate the
SO, and H,SO, formation in marine engine
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Numerical tools (for MAN Diesel & Turbo SE)

e Soot library
- OpenFOAM 2.0.x
- OpenFOAM 2.3.x

e Chemical kinetic mechanism
- Skeletal n-heptane mechanism
- Multicomponent diesel surrogate model

e STARCCM combustion engine model
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Thank you
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