-{2.7182818284

Modelling of combustion and soot formation in various spray flame

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!}$

Kar Mun, PANG IC Engine Group TES & FVM

DTU Mechanical Engineering

Department of Mechanical Engineering

DTU

Introduction

Background

- Marine engines operate at various modes, although the operating range is narrower than that of automotive engines.
- At different injection timing, the temperature and pressure are different. Also, EGR may or may not be used. All these initial conditions influence the ignition, combustion and the subsequent emissions formation.
- Diesel soot modelling: Uncertainties at diesel chemistry, soot precursor chemistry and soot model.
- Instead, soot formation of fuel which the chemistry is better understood is first studied.

Introduction

DTU

Background

- Prior to the soot formation modelling, it is essential to capture the *formation of soot precursor*
- *Effects of pressure on soot mass production* are not captured

Objectives

- To study the effects of the use of different gas-phase species as soot precursors
- To study the effects of different soot formation/oxidation submodels on estimations of soot particle evolution
- Validate the optimized soot model across wide range of operating conditions using the n-heptane spray measurements
- Further validate the model using the n-dodecane spray measurements (baseline for the D2 spray case)

Experimental data

Descriptions

- n-Heptane measurements provided Engine Combustion Network (ECN)
- Quasi steady state event is reached

Basis of comparison

- ECN experimental measurements of
 - liquid penetration length (LPL)
 - vapour penetration length (VPL)
 - ignition delay time (IDT)
 - liftoff length (LOL)
 - soot volume fraction
- Soot precursor formation derived based on coupling of detailed chemistry and two-stage lagrangian (TSL) approach [Reference: SAE Technical Paper 2006-01-3434]

Test conditions (diesel engine-like)

T ↑

Test conditions (diesel engine-like)

Numerical formulation

• OpenFOAM version 2.0.x

Models	Descriptions
Spray breakup model	KH-RT
Turbulence model	Standard k- ϵ , with C ₁ = 1.53
Turbulence-chemistry interaction	Well mixed (Well stirred reactor)
Liquid properties	C ₇ H ₁₆
Combustion chemistry	Lu et al. 2009+skeletal PAH model
Soot model	Phenomenological multi- step model
Radiation model	-
Accelerator	Chemistry coordinate mapping
Resolutions	
Spatial (cell size)	0.5 mm x 1.0 mm
Temporal (timestep size)	2e-7s

Numerical formulation

- <u>Skeletal n-heptane model developed by Lu et al. 2009</u> integrated with a skeletal PAH mechanism
- Using 1-D premixed flame code of Cantera 2.0
- Variation of A₁ and A₄ formation trend with respect to the change of equivalence ratio is replicated
- Mole fractions of both ${\rm A}_1$ and ${\rm A}_4$ are overestimated but retain within one order of magnitude
- Limitation of original mechanism which is not capable to predict the correct laminar premixed flame speed

DTU

Non-reacting spray results (LPL and VPL)

• LPL and VPL are reproduced by the model

Reacting spray results (IDT and LOL)

- For high ambient density conditions, the maximum relative error of IDT = 5.3%
- For low ambient density conditions, the maximum relative error of IDT = 11.0%
- All the simulated LOLs match the experimental measurements fairly well (Maximum relative error = 15.1%)
- The model is next used for soot formation study

Combustion results (IDT and LOL)

- For high ambient density conditions, the maximum relative error of IDT = 5.3%
- For low ambient density conditions, the maximum relative error of IDT = 11.0%
- All the simulated LOLs match the experimental measurements fairly well (Maximum relative error = 15.1%)
- The model is next used for soot formation study

Soot model sensitivity analysis

Physical processes	Configuration	Descriptions
Precursor formation	A1	Selecting A ₄ as the soot precursor
Inception	B1	Omitting the activation temperature
	B2	Adding a pressure dependence model constant
Mass growth	C1	Increasing the model constant value
	C2	Using a linear dependence of S _{soot}
	C3	Adding a pressure dependence model constant
	C4	Adding PAH condensation term
Coagulation	D1	Varying model constant values when $k_{sgs} = f(S_{soot}^{0.5})$
	D2	Varying model constant values when $k_{sgs} = f(S_{soot})$
Oxidation (OH)	E1	Increasing collision efficiency
	E2	Deactivating the OH oxidation model
Oxidation (O_2)	F1	Replacing the Lee model with NSC model
	F2	Deactivating the O_2 oxidation model

Soot model sensitivity analysis

Physical processes	Configuration	Descriptions
Precursor formation	A1	Selecting A ₄ as the soot precursor
Inception	B1	Omitting the activation temperature
	B2	Adding a pressure dependence model constant
Mass growth	C1	Increasing the model constant value
	C2	Using a linear dependence of S _{soot}
	C3	Adding a pressure dependence model constant
	C4	Adding PAH condensation term
Coagulation	D1	Varying model constant values when $k_{sgs} = f(S_{soot}^{0.5})$
	D2	Varying model constant values when $k_{sgs} = f(S_{soot})$
Oxidation (OH)	E1	Increasing collision efficiency
	E2	Deactivating the OH oxidation model
Oxidation (O_2)	F1	Replacing the Lee model with NSC model
	F2	Deactivating the O_2 oxidation model

DTU

Soot model sensitivity analysis (A1)

Т (К)	ρ (kg/m3)	[O ₂]	▲ Injection(ms)	Total fuel mass injected (mg)
900	14.8	10.0 %	5.9	15.5
1000	14.8	10.0%	6.9	18.1*,a
1100	14.8	10.0%	6.8	18.0*
750	14.8	21.0 %	6.6	17.4
800	14.8	21.0%	6.6	17.5
850	14.8	21.0%	6.7	17.6
900	14.8	21.0%	6.6	17.5*
950	14.8	21.0%	6.7	17.6
1000	14.8	21.0%	6.8	17.8* ^{,b}
1100	14.8	21.0%	6.9	18.1
1000	1/0	Q 0 %	6.0	10 1
1000	14.0		6.0	10.1 10.1*.a
1000	14.0	12.0 %	6.8	17.8*
1000	1/ 8	15.0 %	6.8	17.8*
1000	14.8	21.0 %	6.8	17.8*,b
1000	30.0	8.0 %	6.8	18.0*
1000	30.0	10.0 %	6.8	18.0*
1000	30.0	12.0 %	6.8	17.8*
1000	30.0	15.0 %	6.8	18.0*

Soot model sensitivity analysis (A1)

- Relative change of spatial soot precursor evolution predicted by both models in response to decrease of ambient [O₂] is captured
- The use of C₂H₂ as soot precursor leads to the associated formation appears to be nearer to the injection tip
- With the implementation of A_4 as soot precursor, the associated distribution is shifted to a location further downstream

Soot model sensitivity analysis (C1 to C4)

Т (К)	ρ (kg/m3)	[O ₂]	∆ Injection(ms)	Total fuel mass injected (mg)
900	14.8	10.0 %	5.9	15.5
1000	14.8	10.0%	6.9	18.1 *,a
1100	14.8	10.0%	6.8	18.0*
750	14.8	21.0 %	6.6	17.4
800	14.8	21.0%	6.6	17.5
850	14.8	21.0%	6.7	17.6
900	14.8	21.0%	6.6	17.5*
950	14.8	21.0%	6.7	17.6
1000	14.8	21.0%	6.8	17.8* ^{,b}
1100	14.8	21.0%	6.9	18.1
1000	14.8	8.0 %	6.9	18.1
1000	14.8	10.0 %	6.9	18.1* ^{,a}
1000	14.8	12.0 %	6.8	17.8*
1000	14.8	15.0 %	6.8	17.8*
1000	14.8	21.0 %	6.8	17.8* ^{,b}
1000	30.0	8.0 %	6.8	18.0*
1000	30.0	10.0 %	6.8	18.0*
1000	30.0	12.0 %	6.8	17.8*
1000	30.0	15.0 %	6.8	18.0*

Soot model sensitivity analysis (C1 to C4)

Black - Low ambient density Red - High ambient density

- C1 Increasing the model constant value
- C2 Using a linear dependence of $S_{\mbox{\scriptsize soot}}$
- C3 Adding a pressure dependence model constant
- C4 Adding PAH condensation term

- Experimental *ratio_{pa}* is approximately nine-fold
- Simulated ratio_{pa} is only approximately two-fold
- Ratio_{pa} is sensitive to S_{soot} .
- As $k_{sgs} = f(S_{soot})$, *ratio_{pa}* = 8.35 is obtained, *but* soot cloud is shifted to a location further downstream
- An alternative is by taking a pressure dependence model constant into consideration (power exponent of 1.4)

Soot model sensitivity analysis (Optimized)

Physical	Descriptions	Mathomatical ovprossions	
processes	Descriptions	Mathematical expressions	
Precursor			
formation	A ₄ is selected as soot precursor	.21000	
Incontion	Baseline inception submodel is	$\omega_{inc} = 10000 \cdot \exp(\frac{-1000}{T}) \cdot [A_4]$	
псерноп	implemented		
Surface	Square root function of ${\rm S}_{\rm soot}$ is chosen		
arowth	and a pressure dependence model	$\omega_{sg} = 14(\frac{P}{P_{ref}})^{1.4} \cdot \exp(\frac{12100}{T}) \cdot S_{soot}^{0.5} \cdot [C_2 H_2]$	
growth	constant is introduced	rej	
Coogulation	Baseline coagulation submodel is	$c_{0} = -3.0 \left(24RT \right)^{0.5} \left(6M \right)^{1/6} N^{-11/6}$	
Coaguiation	implemented	$\omega_{coag} = 5.0 \left(\frac{1}{\rho_{soot} N_A} \right) \left(\frac{1}{\pi \rho_{soot}} \right)^{-1} N_{soot}$	
OH oxidation	Increasing the collision efficiency to 0.13	$\omega_{OH} = 1.146 \cdot T^{0.5} \cdot S_{soot} \cdot [OH]$	
	Baseline O ₂ oxidation submodel is	$a_{1} = 10000, T^{0.5}, \exp(\frac{19778}{2}), S = 1000$	
O_2 oxidation	implemented	$\omega_{02} = 10000 T \exp(\frac{T}{T}) \cdot \delta_{sout} \cdot [O_2]$	

DTU

Validation of optimized soot model (Spray H)

 Temporal and spatial soot evolution at different ambient oxygen levels is reproduced by the model.

DTU Mechanical Engineering

Department of Mechanical Engineering

23

Maximum

Minimum

Validation of optimized soot model (Spray H)

Validation of optimized soot model (Spray H)

- Drop of peak value with respect to ambient [O₂] drop is reproduced by both default and optimized models
- Default soot model overestimates soot volume fraction in low density cases (and hence fails to calculate ratio_{pa} values)
- With optimized model, predictions of ratio_{ρa} are improved

Further validation under the Spray A condition

 Experimental measurement shows that SVF of fuels with 20-30% aromatic compound rises by factors of ~5-7 when ambient temperature increases from 900 K to 1000 K

Ref: Kook et al. [2012]

 Ξ

Operating conditions

• Two different fuels are used but operating conditions are similar

ρ (kg/m³)	T (K)	[O ₂]	Fuel	m _f [mg]	∆ _{ini} [ms]
22.8	900	0%	n-dodecane	13.77	6.1
22.8	900	15%	n-dodecane	13.77	6.1
22.8	1000	15%	n-dodecane	13.77	6.1
22.8	900	0%	diesel	19.70	7.1
22.8	900	15%	diesel	19.70	7.1
22.8	1000	15%	diesel	19.70	7.1

Operating conditions

• Two different fuels are used but operating conditions are similar

ρ (kg/m ³)	T (K)	[O ₂]	Fuel	m _f [mg]	Δ _{ini} [ms]
22.8	900	,0%	n-dodecane	13.77	6.1
22.8	900	15%	n-dodecane	13.77	6.1
22.8	1000	15%	n-dodecane	13.77	6.1
22.8	900	0%	diesel	19.70	7.1
22.8	900	15%	diesel	19.70	7.1
22.8	1000	15%	diesel	19.70	7.1

Operating conditions

• Two different fuels are used but operating conditions are similar

Numerical model formulation

• OpenFOAM version 2.0.x

Models	Descriptions
Spray breakup model	Reitz-Diwakar
Turbulence model	Standard k- ϵ , with C ₁ = 1.58
Turbulence-chemistry interaction	Well Stirred Reactor Eulerian Stochastic Fields (D2)
Liquid properties	C ₁₂ H ₂₆ ; C ₁₄ H ₃₀
Combustion chemistry	n-dodecane: Luo et al. 2014 D2: Liu et al. 2002
Soot model	Revised phenomenological multi- step model (Pang et al. 2015)
Radiation model	-
Resolutions	
Spatial (cell size)	0.5 mm x 0.5 mm
Temporal (timestep size)	2e-7s

n-Dodecane spray combustion

 Variation of maximum SVF with respect to the change of ambient temperature (ratio of ~2) in n-Dodecane spray is captured

Diesel spray combustion

- TCI improves the IDT and LOL results
- But, calculated ratio of maximum SVF is ~2 is close to with the measurement in n-dodecane spray combustion data

33 DTU Mechanical Engineering Department of Mechanical Engineering

Concluding remarks

- Overall soot precursor distribution prediction is improved when A_4 is used as soot precursor but C_2H_2 works well in short LOL cases
- Sensitivity analysis indicates that <u>S_{soot}</u> gives a pronounced effect on predictions of <u>spatial soot distribution</u> and <u>soot concentration</u>
- For n-heptane spray under diesel engine-like operating conditions, the optimized model is applicable to simulate <u>spatial evolution of</u> <u>soot particle</u> and <u>soot volume fraction</u> at varying levels of EGR for both low and high density conditions
- Increment of maximum SVF with respect to the rise of ambient temperature in the n-dodecane spray cases are replicated
- This is not replicated in the D2 case and the soot formation at the jet core is unaffected by the turbulence chemistry interaction

What's next?

- Modelling of diesel soot formation
- From the Sandia combustion vessel to the MAN Diesel & Turbo A/S marine engine

Thank you

Kar Mun, PANG kmpan@mek.dtu.dk

DTU Mechanical Engineering

Department of Mechanical Engineering