Line-of-sight measurements of stable gas flames

By Anders Ivarsson

DTU Mechanical Engineering

Department of Mechanical Engineering

Laminar flat flames

IR emission absorption thermometry

IR emission absorption thermometry

IR emission absorption thermometry Core temperatures validated with CARS point measurements

Soot thermometry

Absorption measured between 500 and 520 nm

Soot thermometry

Emission absorption method vs. color method

- Both methods -> Low temperatures (100-300 K)
- Color method -> Very low optical thickness

New burner setup

Ocean Optics HR4000CG UV-NIR Spectrometer

OceanOptics HL-2000 HP-RS-232 Light Source

Automatic traversing mechanism

Automatic traversing mechanism

For r>20mm: No radiation from the flame

Spatial Tomography

12 DTU Mechanical Engineering

Spatial Tomography

Santoro burner setup

Laser vs. diffuse back-illumination

16 DTU Mechanical Engineering

Spectral dependence of optical thickness

$$K_{\rm abs} = \frac{Cf_v}{\lambda^{\alpha}}$$

$$\alpha = -\left(\frac{d\ln K_{\rm ext}}{d\ln(1/\lambda)}\right)$$

17 DTU Mechanical Engineering

Spectral dependence of dispersion coefficient

Soot maturity

